LogoLogo
contribute.
  • Hacker Fab Documentation
  • Overview
    • ✨Current Fab Capabilities
      • Fab Capabilities November 2023
      • Fab Capabilities May 2023
  • 🟡Guides
    • Required Reading (todo)
    • Build-a-Fab
    • Filling in the Gaps - Background Resources
    • Part Sourcing
  • 📜Processes
    • Self-Aligned NMOS V1
  • Fab Toolkit
    • 🎥Patterning
      • Lithography Stepper V2.1
      • Lithography Stepper V2 Build
      • Lithography Stepper V1 Build
      • Getting started with Klayout
      • Patterning Tasks - Spring 2025
      • Blu-Ray Lithography
        • Work in Progress
          • KEM-497AAA Pin Out Analysis
        • Lithography Spinner V1
          • Documentation
            • Design Datasheets
          • Hardware
            • BU40N Reference Design
          • Software
        • Base Principles
    • 🧱Deposition
      • 💡Thermal Evaporator V1 Build (WIP)
      • Spin Coater V2 Build (work in progress)
      • 💿Spin Coater V1 Build (to do)
      • Electroless Nickel Plating
      • ⚛️DIY ALD
      • ⚡Sputtering Chamber
    • 🕳️Etching
      • Plasma Etcher
      • HF Jig
    • 🛠️Other Processing Machines
      • Tube Furnace
      • Cleaving Jig
    • 🔍Metrology / Characterization
      • Probe Station
      • Semiconductor Parameter Analyzer
        • SMU - Analog Discoveries
        • SMU - Keithley 4200SCS
      • CV Measurements
      • Spectrometer
      • Profilometer
    • ⚗️Chemicals / Materials
      • Photoresists
      • Dielectrics
        • Spin on Glass
      • Conductors
        • Aluminum
      • Etchants
        • Hydrofluoric Acid
        • Aluminum Etchant (Nitric, Acetic, Phosphoric Acids)
      • Dopant Sources
    • 🤖Lab Automation
      • Automated Spin Coater
      • Gantry
      • Gripper
      • Liquid Handling
      • Tube Furnace (automated)
      • Wafer Cleaver
    • 🏘️Submodules
      • Piezo Nanopositioner (Stick Slip)
      • Interferometer
    • 📚Database
      • Machine Integration
      • Steps and Processes
  • 🧑‍🍳Standard Operating Procedures
    • Patterning SOP - Stepper V2
      • Vacuum Spin Coater SOP
      • Hot Plate SOP
      • Photoresist Strip SOP
    • Plasma Etcher SOP
    • Spin on Glass/Diffusant SOP
      • Spin on Glass Storage and Preparation
      • Spin on Glass Defect Inspection
      • Spin on Glass Thickness Measurement
    • Tube Furnace SOP
    • Glass Acid Etch SOP
    • DIY Thermal Evaporator SOP (CMU Version)
    • MTI Evaporator SOP (No longer in use)
    • Aluminum Etch SOP
    • Probe Station SOP
    • Probe Station SOP - V2
    • Wafer Cleaving SOP
    • Dry Oxide Growth SOP
    • Profilometer SOP
  • 🟢WORKING DOCS
    • CMOS Source/Drain Metal Contact Optimization
    • CMOS Doping Process Development
    • Sputtering Gate Oxides + Metal Gate Contacts
    • NAND + Inverter Characterization
    • CMU Updates
      • Example Student
      • Gina Seo
      • Jessica Wen
      • Yang Bai
      • Alex Echols
      • Gongwei Wang
      • Ying Meng
      • Shagun Maheshwari
      • Yuichi Hirose
      • Eric Dubberstein
      • Michael Juan
      • Justin Wang
      • Katie Eisenman
      • Marta Freitas
      • Matthew Choi's Updates
        • Week 2 Updates
        • Week 3 Updates
        • Week 4 Updates
        • Week 5 Update
        • Week 6 Update
        • Week 7 Update
        • Week 8 Update
        • Week 9 Update
        • Week 11 Update
        • Week 12 Update
        • Week 13 Update
      • Sandra You
      • Felicia Liu
      • Melinda Chen
      • Shayaan Gandhi
      • Sky Bailey
      • Haewon Uhm
      • James Lin
      • Ayan Ghosh
      • Advaith Menon
      • Adwoa Asare
      • Qirui (Ridge) Da Updates - Database
  • 🔲Templates (to do)
    • Build Manual Template
    • Bought Equipment Template
    • Standard Operating Procedure Template
    • BOM Template
    • Hardware X Template (for reference)
  • Archive
    • Patterning SOP - Stepper V1
Powered by GitBook
On this page
  • Background
  • Quantifiable Parameters
Export as PDF
  1. Fab Toolkit

Patterning

Last updated 3 months ago

For a description of what the team at CMU is working on in Spring 2025, check out !

Goals of this page:

  • Not to try and cover theory or industry standard, but to break the problem into first principles just enough to give context to the quantifiable parameters

  • Also an opportunity to frame the problem wide enough to set the tone of thinking of these machines from the ground up (aligned with goal, don't think of industry as immutable)

  • Exhaustive list of industry methods and examples

  • Quantifiable end user parameters with descriptions + standardized tests


Background

Overview

A photolithography stepper is a machine that exposes a pattern of light onto a layer of photoresist chemical on the wafer, then ‘steps’ over to the next pattern. Before each exposure, it must align with previous patterns on the wafer so that each layer of the device is in the correct position relative to the previous. The accuracy with which it can do this is called “alignment accuracy”. Alignment accuracy and optical resolution are the two most important metrics of a stepper’s performance.

There are 2 main components of our stepper: the light source and optics, and then the mechanical micropositioning stage that moves the chip itself. Alignment accuracy is a function of both the mechanical micropositioning stage and the reliability of the projector’s optomechanical components.

Masked vs. Maskless Lithography Systems

Commercial lithography machines use photomasks to create the image, typically made of chrome on glass. Instead, our Maskless Photolithography Stepper uses a DLP projector to create a pattern. This allows us to change patterns instantly, opening the option up for advanced techniques like tiling (making a circuit larger than one exposure field).

Quantifiable Parameters

Functional Specifications: The End Product

Developed Resolution

describe out standardized test: darkfield/brightfield, developed with AZ400K for 80s, measured pitch distance, used airforce test pattern

Value:

Tools Required for Verification:

Method of Verification:

References: pics/videos

Automation Capabilities / Throughput

what human actions are required: manual loading/unloading, choose the pattern, align manually or automatically with software

approximate area exposed per second

how much time to do one exposure, how much of that is active work vs. waiting around

Patterning Machine Specifications:

Optical Resolution

Tools Required for Verification: Microscope + Calibrated Camera to convert pixels to μm

Method of Verification: make another page for optical resolution test?

Possible Variation: misalignment of optics during assembly

References: pics/

Developed Resolution

Tools Required for Verification:

Method of Verification:

References: pics/videos

Single Exposure Area

Approximate Exposure Time (for AZ P4210 photoresist)

Tools Required for Verification: AZ400K Developer Solution + Microscope

Method of Verification:

Possible Variation: Can vary UV LED power and beam splitter ratio to decrease/increase exposure time

References: pics/videos

Mechanical Resolution - Step Size

Mechanical Resolution - Repeatability

Maximum Wafer Size

Possible Variation: Error during development (see )

Possible Variation: Error during development (see )

🎥
this document
Patterning SOP
Patterning SOP